安全動態(tài)

瀚思讓威脅無處藏身 這樣的"攝像頭"誰不想要?

來源:聚銘網(wǎng)絡(luò)    發(fā)布時間:2016-09-12    瀏覽次數(shù):
 

信息來源:比特網(wǎng)

作為維護(hù)交通秩序、保證交通安全的最重要手段之一,交通攝像頭發(fā)揮了不可替代的作用,也給很多開車的人留下了深刻的印象:對大多數(shù)人來說,違章時遇到交通攝像頭的體驗(yàn),基本上就是“連警察的面兒都沒見著,幾百塊就沒了,2分就沒了,還得跑一趟交通隊?!?/span>

拋開開車人的私心,可以說正是以交通攝像頭為基礎(chǔ)的交通安全管理,以幾乎不需要警力的非現(xiàn)場交通違章執(zhí)法手段,極大的保證了城市交通的安全有序。它不僅能夠發(fā)現(xiàn)闖紅燈、越線、超速等明顯的交通違章,還能夠探知到極其隱蔽的開車打電話、不系安全帶、超員超載等交通安全隱患。

更有甚者,先進(jìn)的城市交通攝像頭網(wǎng)絡(luò)就像一張無形的大網(wǎng),構(gòu)成了無處不在“城市交通天眼”,鎖定肇事嫌疑車輛軌跡、判定危險駕駛行為、發(fā)現(xiàn)潛在酒后駕車等等“漂浮冰山下的深層威脅”游刃有余。

這樣的手段,如此的效果,受益的是城市交通的管理者,吸引的是企業(yè)安全的負(fù)責(zé)人。

試想一下這樣的安全管理體制:

l  能夠快速的發(fā)現(xiàn)、定位對企業(yè)安全造成威脅的行為;

l  能夠探測到刻意隱藏過的安全威脅,以及不易發(fā)現(xiàn)的安全隱患;

l  能夠借助實(shí)時的數(shù)據(jù)分析,將孤立的、看似正常的行為聯(lián)系起來,抓出隱藏在最深處的蛛絲馬跡,順藤摸瓜抓到幕后黑手。

交通攝像頭是如何做到上述一切驚為天人的安全管控的?那些坐在交通安全管理中心的管理者們,又有哪些經(jīng)驗(yàn)和心得,是那些為企業(yè)安全殫精竭慮的同行們可以借鑒的?從交通攝像頭與以此為基礎(chǔ)的交通安全管理事務(wù)上,企業(yè)的首席安全官們(CSO),又能夠得到什么樣的啟示?

大數(shù)據(jù)是所有安全行業(yè)的基礎(chǔ)

隨著大數(shù)據(jù)時代的到來,企業(yè)業(yè)務(wù)量的激增也同時帶來了數(shù)據(jù)量的爆炸式增長,然而每一個操作、每一次訪問和每一條數(shù)據(jù)中,都有可能夾帶著安全威脅或是安全隱患。在諸多安全事故中,惡意破壞者都利用了企業(yè)安全團(tuán)隊對大數(shù)據(jù)集處理速度慢、處理精度低、處理意愿差以及處理水平不高等多方面的因素,進(jìn)行攻擊,并從中獲得利益。

就一般性的觀點(diǎn)來看:大數(shù)據(jù)以它浩如煙海的數(shù)據(jù)量,讓識別安全隱患形同大海撈針;以復(fù)雜豐富的數(shù)據(jù)來源與數(shù)據(jù)類型,讓全局識別安全威脅看似不可完成;“利用”不斷膨脹的體量,讓呈現(xiàn)實(shí)時的安全動態(tài)變得奢侈難以企及。在表面上看來,大數(shù)據(jù)成為了阻礙企業(yè)安全業(yè)務(wù)正常有序發(fā)展的絆腳石。

與之類似,以交通攝像頭為基礎(chǔ)的交通安全管理,在做到上述一切驚為天人的成就之前,也曾經(jīng)遇到了大數(shù)據(jù)的難題:激增的交通流量、復(fù)雜的交通環(huán)境、越來越多的監(jiān)測指標(biāo)等等因素導(dǎo)致了交通安全管理的大數(shù)據(jù)難題。

以北京為例,這座城市如今擁有機(jī)動車560萬輛,即使是通過限號行為限制了85萬輛機(jī)動車進(jìn)入五環(huán)路內(nèi)行駛,每天在北京城區(qū)內(nèi)行駛的機(jī)動車也在350~400萬輛之間,形成了難以估量的交通流量,而北京的交通違章攝像頭有多少呢?

根據(jù)公開數(shù)據(jù)顯示:2015年10月底,北京交管部門開展為期100天的高速公路交通秩序?qū)m椪涡袆樱度氲臄z像頭數(shù)量大約是一千多個,而截止2014年末,北京市有高速公路里程981公里。

一千多個攝像頭負(fù)責(zé)近一千公里的高速公路,每天的流量在100萬輛左右(2015年春節(jié)北京高速公路流量127.2萬輛),簡單算一下就知道,一個攝像頭要管一公里、平均分配到1000多輛車。交通攝像頭遇到了前所未有的挑戰(zhàn),來自大數(shù)據(jù)的挑戰(zhàn)。

但就文章開頭內(nèi)容所述,顯然以交通攝像頭為基礎(chǔ)的交通安全管理,在遇到大數(shù)據(jù)難題、挑戰(zhàn)之后,很好的克服了大數(shù)據(jù)對交通安全攝像頭、對交通安全管理方式的影響,改變了大數(shù)據(jù)作為無法逾越難題的舊狀,甚至將滿含“絆腳石”意味的大數(shù)據(jù)集合,轉(zhuǎn)變成了寶貴的以大數(shù)據(jù)為基礎(chǔ)的安全資源。

那么,同樣是包含“安全”二字的兩個行業(yè),又都遇到了最令人頭痛的大數(shù)據(jù)難題,當(dāng)前者已然成為成功的典范,后者還在困擾企業(yè)的安全業(yè)務(wù)負(fù)責(zé)人,為什么我們不將兩者放在一起,嘗試著讓交通攝像頭的做法與經(jīng)驗(yàn),成為企業(yè)安全業(yè)務(wù)能夠“由此及彼,觸類旁通”的催化劑?那么,交通攝像頭及以其為核心基礎(chǔ)構(gòu)建交通安全管理體制,是如何做的呢?

第一,設(shè)置一體化、統(tǒng)一化應(yīng)對復(fù)雜情況的交通攝像頭,統(tǒng)一識別不同天氣、光照條件下的交通流量信息,也可以識別從大卡車、大客車到小轎車等不同類型的車輛信息。

對于企業(yè)來說,構(gòu)建一個能夠幫助企業(yè)獲取多種渠道、多種來源的數(shù)據(jù),并將其以統(tǒng)一的標(biāo)準(zhǔn)進(jìn)行整合與識別的平臺,那么,就可以通過結(jié)合大數(shù)據(jù)分析技術(shù)和數(shù)據(jù)可視化,通過不同維度來展現(xiàn)整體安全態(tài)勢。

第二,嘗試通過對車輛駕駛行為、車道偏離等信息的識別、分析,預(yù)測性的判定是否存在危險駕駛風(fēng)險,甚至是酒后駕車的行為,不僅能夠提前預(yù)判出道路違法和不安全事件,更加減少了對繁冗復(fù)雜、耗費(fèi)大量警力的沿路設(shè)卡任務(wù)。

在企業(yè)安全業(yè)務(wù)領(lǐng)域,為海量的大數(shù)據(jù)彼此之間建立聯(lián)系,進(jìn)行全局大數(shù)據(jù)集合的關(guān)聯(lián)分析,繼而實(shí)現(xiàn)根據(jù)“(持續(xù)不斷的)行為語言”來自動判定安全威脅的功能是非常重要的,這樣不僅可以從規(guī)模龐大的數(shù)據(jù)集合中,準(zhǔn)確的、自動化的識別出安全威脅,更不需要過多的人工干預(yù),實(shí)現(xiàn)以機(jī)器學(xué)習(xí)、算法分析甚至是深度學(xué)習(xí)為基礎(chǔ)的安全威脅分析,這已經(jīng)不僅僅是說攝像頭可以根據(jù)圖形圖像算法來自動判定違章的“基礎(chǔ)功能”了。

第三,讓設(shè)置在高速公路上的攝像頭具備強(qiáng)大的捕捉能力,不僅可以捕捉到僅在其范圍內(nèi)停留零點(diǎn)幾秒的車輛,也可以在車流量暴增的時候同時識別數(shù)輛甚至十幾輛違章車輛。

由此而言,企業(yè)在部署大數(shù)據(jù)安全分析平臺的時候,需要能夠?qū)崿F(xiàn)大規(guī)模并行處理的解決方案,只有具備非常高的吞吐量,并提供實(shí)時或者長期的關(guān)聯(lián)分析能力,才能讓這一平臺真正發(fā)揮作用,高速運(yùn)轉(zhuǎn)。

第四,確保交通攝像頭可以抓拍違章時刻3~4張照片,包括違章車輛特寫、車輛車牌信息和包括完整車輛的小范圍區(qū)域影像,從而在非現(xiàn)場交通違章中,保證對違章行為的忠實(shí)、客觀記錄,做到萬無一失,也為確認(rèn)違章行為和駕車人申訴,提供了可靠的證據(jù)支持。

大數(shù)據(jù)分析平臺必須提供充分的可見性,展現(xiàn)整體的、實(shí)時的安全和合規(guī)態(tài)勢,通過數(shù)據(jù)可視化,讓決策者可以直接很容易了解關(guān)鍵的趨勢和動態(tài),而具體執(zhí)行人員也可以通過多層下拉表單來了解具體細(xì)節(jié)。

此外,在安全業(yè)務(wù)領(lǐng)域,原始記錄取證一直是備受關(guān)注的話題之一,相信這一技術(shù)也可以在大數(shù)據(jù)安全分析平臺中得到印證。

綜上所述,只要企業(yè)的安全解決方案能夠?qū)崿F(xiàn)上述四點(diǎn),那么大數(shù)據(jù)就不僅不是阻礙企業(yè)安全業(yè)務(wù)正常有序發(fā)展的絆腳石,反而可以搖身一變,成為企業(yè)應(yīng)對安全威脅、探查安全隱患、避免安全事故的功臣和必備良藥。

更進(jìn)一步的發(fā)展:安全軌跡和安全云服務(wù)

以大數(shù)據(jù)分析為基礎(chǔ)的安全策略,將幫助大規(guī)模的安全數(shù)據(jù)被有效地關(guān)聯(lián)、分析和挖掘,進(jìn)而發(fā)現(xiàn)那些對企業(yè)業(yè)務(wù)運(yùn)營具有影響的安全威脅,改變企業(yè)中業(yè)務(wù)被動、倉促應(yīng)對的局面。但是,將大數(shù)據(jù)分析引入企業(yè)安全業(yè)務(wù),或者說引入企業(yè)安全防范領(lǐng)域,還有另外一層重要的意義,就是“發(fā)現(xiàn)平靜湖面下潛藏的漩渦”。

我們還拿交通攝像頭來舉例,如今的交通攝像頭,已經(jīng)可以實(shí)現(xiàn)自動化的違章車輛軌跡監(jiān)控及鎖定,這是什么意思呢?大致就是說,一旦發(fā)現(xiàn)車輛違章,特別是極其惡性的交通肇事逃逸,攝像頭之間可以通過信息的識別、交換和分析,建立起違章車輛的行駛時間線,什么時候出現(xiàn)?又消失到哪里去?之前在哪里出現(xiàn)過?等等這些信息都可以獲得,想要找到一輛車,“再也不像是大海里撈針了!”

反推回企業(yè)的安全業(yè)務(wù),我們都知道,既然是蓄意破壞者,那么就一定是低調(diào)的、深藏不露的,要盡可能的隱藏自己的蹤跡,將非常明顯、直接的企圖隱藏在一連串不那么顯眼的行為當(dāng)中。這樣的安全威脅在有大數(shù)據(jù)安全分析之前,幾乎是不可察覺的,要么是對方操之過急導(dǎo)致失手,露出了蛛絲馬跡,要么是對方依然蓄勢待發(fā),對企業(yè)的安全形成了即刻的、實(shí)質(zhì)性的威脅,等輪到這個時候,一切可能都已經(jīng)晚了。

基于大數(shù)據(jù)框架對企業(yè)的系統(tǒng)、應(yīng)用和用戶訪問行為數(shù)據(jù)進(jìn)行存儲與分析,并采用機(jī)器學(xué)習(xí)和算法來檢測異常行為,則可以將蛛絲馬跡串聯(lián)起來,形成整體的安全威脅鏈條,從而避免上述的事情發(fā)生,最大限度的保護(hù)企業(yè)信息資產(chǎn)安全。事實(shí)上,只有通過海量數(shù)據(jù)的深度挖掘與學(xué)習(xí),才能使企業(yè)適應(yīng)千變?nèi)f化的安全威脅,并實(shí)現(xiàn)由“被動防御”到“主動智能“的信息安全戰(zhàn)略升級。

找尋到安全軌跡是企業(yè)安全業(yè)務(wù)的最終目的,但部署這樣的安全平臺是不是很復(fù)雜呢?

這里就要談到另一個問題,安全業(yè)務(wù)的未來一定是屬于云安全,或者稱是安全云服務(wù)的,這就像北京市如今通過軟硬件升級,將一些治安攝像頭和交通攝像頭融合在一起,在社會治安、交通管理上實(shí)現(xiàn)攝像頭的動態(tài)交換與調(diào)配一樣,安全業(yè)務(wù)的未來一定是通過SaaS(軟件即服務(wù))去做的。

原因有二:

第一,這能夠讓企業(yè)的安全負(fù)責(zé)人在企業(yè)新業(yè)務(wù)或新平臺上線時,快速的以服務(wù)的模式部署安全防范機(jī)制,或是為現(xiàn)有的安全體系快速的增加新的防護(hù)屏障;

第二,能夠利用阿里云、騰訊云等資源龐大的公有云平臺,在安全威脅激增、企業(yè)業(yè)務(wù)與數(shù)據(jù)量激增的情況下,實(shí)現(xiàn)動態(tài)的、針對業(yè)務(wù)峰值的資源調(diào)配,避免在業(yè)務(wù)高峰期,有圖謀不軌者意圖渾水摸魚。

安全技術(shù)的未來:從機(jī)械重復(fù)走向認(rèn)知安全

今天,像是HanSight瀚思這樣以“數(shù)據(jù)驅(qū)動安全”為愿景,致力于利用大數(shù)據(jù)幫助企業(yè)解決龐雜、分立的信息安全問題的供應(yīng)商,正在提供以大數(shù)據(jù)為基礎(chǔ),以云服務(wù)為形態(tài),以分析預(yù)測為特征的企業(yè)安全解決方案,讓大數(shù)據(jù)在企業(yè)安全業(yè)務(wù)中充分發(fā)揮它應(yīng)有的作用已經(jīng)是一件唾手可得的事情。

但是,我們看到,在強(qiáng)烈的企業(yè)安全需求下,瀚思和同行業(yè)者們的腳步卻不能止步于此,必須持續(xù)的尋求新發(fā)展方向與技術(shù)突破,并在現(xiàn)有的解決方案的基礎(chǔ)上,實(shí)現(xiàn)更加智能化、自動化、現(xiàn)代化的安全解決方案,這是我們每個安全企業(yè)的責(zé)任。

針對安全行業(yè)的發(fā)展趨勢,我們認(rèn)為,其中一個重要方向,是以人工智能為基礎(chǔ)的認(rèn)知安全。

人工智能的概念相信大多數(shù)人都很清楚,它的目標(biāo),是以大數(shù)據(jù)為基礎(chǔ),輔之以相匹配的計算能力,經(jīng)過大量的模型訓(xùn)練(機(jī)器學(xué)習(xí)乃至深度學(xué)習(xí)),對人類大腦學(xué)習(xí)、理解、判斷事物過程進(jìn)行模擬,創(chuàng)造出擬人或是類人的計算機(jī)系統(tǒng),以擬人或者類人的“思維方式”(模型處理方式)去幫助人類解決大量需要依靠人腦和人的思維邏輯才能解決的問題。換言之,就是讓機(jī)器可以“像人一樣根據(jù)不斷積累的知識進(jìn)行推演和預(yù)測”。

認(rèn)知安全是人工智能在安全領(lǐng)域的落地,一個典型的例子就是IBM的認(rèn)知計算平臺Watson在安全領(lǐng)域的應(yīng)用:

IBM的科學(xué)家不斷以大量的安全大數(shù)據(jù)注入Watson,使用大數(shù)據(jù)安全訓(xùn)練模型對Watson進(jìn)行深度學(xué)習(xí)線下訓(xùn)練,讓它從“真正的語義和內(nèi)涵上理解什么是安全,什么是安全威脅,什么是安全隱患”,最終讓W(xué)atson形成自己對安全問題的判斷,實(shí)現(xiàn)對安全問題的“思維認(rèn)知”,而不是“全盤(機(jī)械化的)模仿”,避免了對原有安全問題的分析邏輯和判斷策略的簡單的、機(jī)械化的重復(fù)。

“馬兒不僅吃得少,跑得快,還知道避開溝壑暗坑”對企業(yè)的安全管理者來說,認(rèn)知安全的價值是顯而易見的:它就像是直接向企業(yè)中植入了一個計算能力飛快,不遵從刻板的教條(傳統(tǒng)安全問題的判斷往往是基于判定條件的簡單邏輯重復(fù)),“真正動腦挖掘問題、理解問題、解決問題”的安全專家,毫無疑問,認(rèn)知安全的未來必然是顛覆性和突破性的。

認(rèn)知安全同樣是瀚思的研發(fā)方向之一,但現(xiàn)在看起來,認(rèn)知安全離我們還有一段時間的距離,可安全問題是刻不容緩的。因此,瀚思在“以大數(shù)據(jù)為基礎(chǔ),‘?dāng)?shù)據(jù)驅(qū)動安全’”的安全理念下,持續(xù)升級和優(yōu)化自身的安全策略及解決方案,為企業(yè)當(dāng)下的安全問題尋求大數(shù)據(jù)解決方案。

瀚思續(xù)幫助企業(yè)的安全管理者們發(fā)現(xiàn)那些顯而易見的安全問題,也能夠用自身的“火眼金睛”洞察出那些看似孤立的、偶然發(fā)生的問題背后的“真正意圖”,讓大企業(yè)在大數(shù)據(jù)時代中的安全風(fēng)險降到最低,穩(wěn)定、高效的建設(shè)安全無憂的現(xiàn)代化企業(yè)。

 
 

上一篇:應(yīng)“云”而生--云時代的運(yùn)維新理念

下一篇:2016年09月12日 聚銘安全速遞